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Abstract. We analyse two new versions of θ-expanded non-commutative quantum electrodynamics up to
first order in θ and first loop order. In the first version we expand the bosonic sector using the Seiberg–
Witten map, leaving the fermions unexpanded. In the second version we leave both bosons and fermions
unexpanded. The analysis shows that the Seiberg–Witten map is a field redefinition at first order in θ.
However, at higher order in θ the Seiberg–Witten map cannot be regarded as a field redefinition. We find
that the initial action of any θ-expanded massless non-commutative QED must include one extra term
proportional to θ which we identify by loop calculations.

1 Introduction

Quantum field theory on non-commutative structures has
received increasing attention during the last years [1–4].
In almost all articles on the subject a non-commutative
structure

[x̂µ, x̂ν ] = iθµν (1.1)

characterised by a constant non-commutativity parameter
θ has been considered, mainly due to the possibility of ex-
plicit calculations. Some investigations of field theories in-
volving a non-constant θ have been performed [5,6]. In any
case, non-commutative configurations of the form (1.1) are
to be seen in the spirit of deformation quantisation [7],
which form a subspace of all possible non-commutative
settings [8]. The algebra (1.1) with constant θ serves as
the simplest possible setting for a non-commutative quan-
tum field theory.

Because the relation (1.1) implies a non-locality of the
underlying space-time, the question of renormalisability
and, as a consequence hereof, the method of quantisation,
is of central interest.

The method mostly applied for quantisation takes the
full, non-expanded, non-local action as the source of Feyn-
man rules. This leads to damping phases which renders the
non-planar sector UV-finite. However, the entailed UV–
IR mixing leads to new infrared divergences [9] which
spoil renormalisability beyond first loop order. A thorough
analysis of the problem was given in [10,11]. In the spe-
cial case of non-commutative φ4-theory methods of finite
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temperature quantum field theory have been used to re-
sum the perturbation series leading to renormalisability
[12]. This method might be useful for non-commutative
gauge theories as well. So far, however, the problem of
preserving the gauge symmetry has not been solved. Ideas
involving field redefinitions to overcome the IR-problems
were presented in [13]. It is however unclear whether this
idea will prove fruitful because it transfers the problems to
higher n-point functions rather than removing them from
the theory. The only solution to the problem of quantis-
ing non-commutative gauge theory known today is the
introduction of supersymmetry [14,15], because the di-
vergences present in certain supersymmetric models are
“soft” enough to render the UV–IR mixing integrable [16].

An alternative method of quantisation was proposed in
[17]: The non-commutativity structure θ apparently limits
the choice of gauge group to that of a matrix representa-
tion of a U(N) gauge group. The choice of a more gen-
eral group automatically entails enveloping algebra valued
fields rendering the model seemingly meaningless. This
problem is solved by expanding the model in θ via the
Seiberg–Witten map [1,18,19], which expresses the non-
commutative gauge field in terms of a commutative gauge
field. The price paid is however very high: θ-expanded
theories are truly power-counting non-renormalisable and
involve infinitely many vertices with an arbitrary num-
ber of legs. In [20] the purely bosonic case was analysed
for an Abelian group and in [21] it was shown that the
photon self-energy is renormalisable to all orders. In [22],
however, θ-expanded non-commutative QED was proven
non-renormalisable, putting this line of quantisation to an
apparent halt.

A central problem related to non-commutative field
theories which becomes urgently important in the second
method of quantisation is the choice of the action: In order
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to quantise a power-counting non-renormalisable model
one needs very strong symmetries. Symmetries are to be
found in the classical action, but the above scenario does
not give any criteria which dictate the form of the action,
apart from Lorentz and gauge symmetries and the demand
that the limit θ → 0 yields the commutative model. These
bonds leaves a huge space of possible actions. If the naive
– initial – choice of the commutative action equipped with
appropriate star products should prove renormalisable the
non-commutativity must somehow yield symmetries by
itself. On the other hand, one could speculate whether
the quantisation procedure will by itself cast light on this
question by forcing extra terms to the initial naive choice
and thereby lead us to a suitable action. In the light of re-
cent phenomenological works considering the θ-expanded
standard model via the Seiberg–Witten map [23] we find it
important to single out the initial action by the behaviour
of the Seiberg–Witten map on quantum level.

In this paper we analyse two variations of the second
method of quantisation (θ-expansion) up to first order in
θ and first loop order. These two variations are closely
related to the θ-expanded non-commutative QED stud-
ied in [22] where both the bosonic and fermionic sectors
were expanded via the Seiberg–Witten map. Here we first
consider θ-expanded non-commutative QED in the special
case where the Seiberg–Witten map is only applied to the
bosons. The reason for this is speculative: Whereas there
are strong mathematical reasons for expanding the bosons
via the Seiberg–Witten map [18] there do not seem to be
urgent reasons for applying the Seiberg–Witten differen-
tial equation to the fermions [24]. Secondly, we consider
the case of θ-expanded non-commutative QED without
use of the Seiberg–Witten map whatsoever. In connection
to the above it is natural to investigate this case in order
to fully understand the role of the Seiberg–Witten map.

What we find is partly encouraging: Up to unphysical
field redefinitions both studied settings coincide with the
results of [22]. This means that the Seiberg–Witten map is
nothing but a field redefinition at first order in θ. However,
we find substantial evidence that this will not be the case
at higher orders in θ, thus leaving a small window of hope
open for θ-expanded models. It means, though, that the
initial action of any θ-expanded model involving fermions
must be extended with at least one extra term which we
identify. This extra term suffices – in the massless case –
for one-loop renormalisability at first order in θ.

In the massive case two extra instabilities occur in the
fermionic sector, which cannot be removed in an obvious
way. It thus appears that we are cumulating evidence that
if one insists on considering θ-expanded non-commutative
Yang–Mills theory, then the fermionic mass must be in-
troduced via a Higgs mechanism.

Let us mention that our initial motivation for study-
ing θ-expanded field theories without using the Seiberg–
Witten map was first of all the wish to obtain θ-graded
symmetries which could fix the θ-structure of the action
on the quantum level. It turned out, however, that this
does not work because we loose at the same time the ini-
tial “flat” gauge symmetry. One could speculate if other
symmetries present in the original θ-non-expanded action

(we think e.g. of symmetries of the spectral action [25]; see
also the discussion in [22]) could provide useful θ-graded
symmetries of the expanded action. An interesting exam-
ple is supersymmetry which indeed yields such a θ-graded
symmetry [26].

This paper is organised as follows: In Sect. 2 we intro-
duce non-commutative Yang–Mills theory. In Sect. 3 we
expand the action using the Seiberg–Witten map in the
bosonic sector only. The quantisation is studied at first
loop order. In Sect. 4 we repeat the analysis for the ac-
tion expanded in θ without the Seiberg–Witten map. In
Sect. 5 we analyse general changes of variables in the path-
integral and, finally, in Sect. 6 we give a conclusion.

2 Non-commutative Yang–Mills theory

On the space of rapidly decreasing functions on R
4 one

introduces a deformed product

(f � g)(x) (2.1)

=
∫

d4k

(2π)4

∫
d4p

(2π)4
e−i(kµ+pµ)xµ

e−(i/2)θµνkµpν f̃(k) g̃(p),

where f, g are rapidly decreasing functions on the man-
ifold and f̃ , g̃ their Fourier transforms1. The �-product
(2.1) is associative and non-commutative and yields for
the coordinates xµ belonging to the multiplier algebra the
commutator

[xµ, xν ]� ≡ xµ � xν − xν � xµ = iθµν . (2.2)

We consider the action of non-commutative Yang-Mills
(NCYM) theory, including fermions, given by

Σ̂cl =
∫

d4x

(
− 1

4g2 F̂µν � F̂
µν + ψ̂ � iγµD̂µψ̂ −mψ̂ � ψ̂

)
,

(2.3)
with

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]�,

D̂µψ̂ = ∂µψ̂ − iÂµ � ψ̂.

Notice that this is a non-local field theory. The action
(2.3) is invariant with respect to an infinitesimal gauge
transformation

δΛ̂Âµ = D̂adj
µ Λ̂ ≡ ∂µΛ̂− i[Âµ, Λ̂]�,

δΛ̂ψ̂ = iΛ̂ � ψ̂,

δΛ̂ψ̂ = −iψ̂ � Λ̂. (2.4)

Usually this gauge symmetry is fixed via a gauge-fixing
term, introducing ghost ĉ, anti-ghost ĉ and multiplier field
B̂,

Σ̂gf =
∫

d4xŝ
(
ĉ � ∂µÂµ +

α

2
ĉ � B̂

)
, (2.5)

1 Our Fourier conventions are f(x) =
∫

(d4k)/((2π)4)e−ik·x

f̃(k) and f̃(k) =
∫

d4x eik·xf(x)
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where we define the non-commutative BRST transforma-
tions by

ŝÂµ = D̂adj
µ ĉ, ŝĉ = iĉ � ĉ,

ŝψ̂ = iĉ � ψ̂, ŝψ̂ = −iψ̂ � ĉ,

ŝĉ = B̂, ŝB̂ = 0. (2.6)

Finally, we couple the non-linear BRST transformations
to external fields (ρ̂, ρ̂, σ̂µ, κ̂) by introducing an extra term
into the action,

Σ̂ext =
∫

d4x(ρ̂(ŝψ̂) + (ŝψ̂)ρ̂+ σ̂µ(ŝÂµ) + κ̂(ŝĉ)), (2.7)

and define

ŝρ̂ = 0, ŝρ̂ = 0, ŝσ̂µ = 0, ŝκ̂ = 0. (2.8)

The full tree level generating functional for 1PI graphs
reads

Γ̂ (0) =
(
Σ̂cl + Σ̂ext + Σ̂gf

)
. (2.9)

The nilpotency of ŝ allows us to write down the Slavnov–
Taylor identity expressing the BRST symmetry:

S
(
Γ̂ (0)

)
= 0, (2.10)

S (Γ ) =
∫

d4x

(
δΓ

δσ̂µ
δΓ

δÂµ
+
δΓ

δκ̂

δΓ

δĉ

+
δΓ

δρ̂

δΓ

δψ̂
+
δΓ

δψ̂

δΓ

δ ˆ̄ρ
+ B̂

δΓ

δĉ

)
. (2.11)

3 Expanding the action (Case I)

In this section we expand the action of NCYM theory
in θ using the Seiberg–Witten differential equation in the
bosonic sector. In contrast to the analysis performed in
[22] on θ-expanded QED [27] the fermions are not ex-
panded. This entails a picture where the gauge symmetry
is “flat” (not θ-graded) in the bosonic sector and “tilted”
(θ-graded) in the fermionic sector. Performing the loop
calculations we show that the Slavnov–Taylor identities
are still valid on quantum level. Also, we find that the
model characterised by the classical action (2.3) is insta-
ble. Remarkable enough, the bosonic sector is stable at
first order in θ. These results are up to field redefinitions
identical to the results found in [22].

3.1 Classical analysis

The expansion of the action (2.9) is performed according
to

(f � g)(x) = f(x)g(x) +
i
2
θαβ∂αf(x)∂βg(x) + O(θ2),

Âµ = Aµ − 1
2
θρσAρ (∂σAµ + Fσµ) + O(θ2),

Φ̂ = Φ, ∀Φ̂ ∈ {ψ̂, ˆ̄ψ, ĉ, ˆ̄c, B̂, ˆ̄ρ, ρ̂, σ̂µ, κ̂}, (3.1)

where the gauge field is expanded according to the
Seiberg–Witten differential equation [1]. This leads to the
expanded action

Σ
{n}
θ−exp =

n∑
i=0

Σ(i), (3.2)

which up to first order in θ (which we are interested in
from now on) reads

Σ
(0)
cl =

∫
d4x

(
− 1

4g2FµνF
µν+ψ̄ (iγµDµ −m)ψ

)
, (3.3)

Σ
(1)
cl =

∫
d4x

(
1

8g2 θ
αβFαβFµνF

µν

− 1
2g2 θ

αβFµαFνβF
µν

+
i
2
θαβψ̄γµ∂αAµ∂βψ − θαβψ̄γµAα∂βAµψ

+
1
2
θαβψ̄γµAα∂µAβψ

)
, (3.4)

Σ
(0)
gf =

∫
d4x

(
B∂µAµ +

α

2
BB − c̄∂µ∂µc

)
, (3.5)

Σ
(≥1)
gf = 0. (3.6)

We choose the “linear gauge-fixing” in the sense of [20] ap-
plied after the Seiberg–Witten map (3.1). The θ-expansion
of (2.5) leads to the “non-linear gauge-fixing” which is dif-
ferent2. We expand the BRST transformations (2.4) ac-
cording to (3.1),

ŝ =
∑
i

s(i),

which to first order in θ gives

s(0)Aµ = ∂µc, s(0)c = 0,

s(0)ψ = icψ, s(0)ψ̄ = −iψ̄c,

s(1)Aµ = 0, s(1)c = 0,

s(1)ψ = − i
2
θαβAα∂βcψ − 1

2
θαβ∂αc∂βψ,

s(1)ψ̄ =
i
2
θαβψ̄Aα∂βc+

1
2
θαβ∂αψ̄∂βc. (3.7)

Here we have used the Seiberg–Witten expansion of the
non-commutative gauge parameter [1]

Λ̂ = λ− 1
2
θαβAα∂βλ+ O(θ2), (3.8)

2 In Case I we apply the linear gauge, which is possible be-
cause the BRST symmetry is “flat” in the bosonic sector –
in perfect analogy to [20]. In Case II (see Sect. 4) we use (a
variation of) the non-linear gauge, because in Case II we have
a θ-graded BRST symmetry in the bosonic sector, leaving no
room for a linear gauge. Since we have shown that the choice of
linear/non-linear gauge leaves loop calculations invariant [20]
this is justified
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replacing λ by c [20], to obtain the non-commutative gauge
transformation of the fermions in terms of the commuta-
tive gauge parameter. Notice that only the BRST trans-
formations of the fermions (3.7) are θ-graded. The ap-
plication of the Seiberg–Witten map in the bosonic sec-
tor “flattens” out their BRST transformations. The to-
tal θ-expanded action is invariant under non-commutative
BRST transformations

s
∑
i

Σ(i) = 0, (3.9)

leading to a tower of symmetries

s(0)Σ(0) = 0, (3.10)

s(1)Σ(0) + s(0)Σ(1) = 0, (3.11)

s(2)Σ(0) + s(1)Σ(1) + s(0)Σ(2) = 0, (3.12)
...

where (3.10) is simply the BRST invariance of the com-
mutative theory.

3.2 Slavnov–Taylor identity

Loop corrections do not preserve the BRST symmetry in
the form (3.9). The solution of this problem is to couple
the non-linear BRST transformations to external fields,

Σ
(n)
ext =

∫
d4x (σµs(n)Aµ + κs(n)c+ ρs(n)ψ + s(n)ψρ) .

(3.13)
Defining the full tree level generating functional for 1PI
graphs to nth order in θ by

Γ (n,0) =
(
Σ

(n)
θ−exp +Σ

(n)
ext +Σ

(n)
gf

)
, (3.14)

the Slavnov–Taylor identity expresses the whole set of
BRST invariances (3.10)–(3.12) up to nth order in θ,

(SΓ )(n) = 0, (3.15)

where the Slavnov–Taylor operator is defined by (2.11)
(without the hat over the fields). In momentum space we
have

0 =
∫

d4k

(2π)4

(
δΓ

δσµ(k)
δΓ

δAµ(−k) +
δΓ

δρ(k)
δΓ

δψ̄(−k)
+

δΓ

δψ(k)
δΓ

δρ̄(−k) +
δΓ

δκ(k)
δΓ

δc(−k) +B(k)
δΓ

δc̄(k)

)
.

(3.16)

Functional derivation of (3.16) with respect to the fields
{Aµ, c, ψ, ψ̄, c̄, B} in momentum space, followed by putt-
ing the fields to zero, leads to various forms of the Slavnov–
Taylor identity for 1PI Green’s functions

(2π)4δ(p1+ . . .+pN )ΓΦ1...ΦN
(p1, . . . , pN )

:=
δNΓ

δΦN (pN ) . . . δΦ1(p1)

∣∣∣∣
Φi=0

. (3.17)

These Green’s functions,

ΓΦ1...ΦN
(p1, . . . , pN ) =

∑
n,
≥0

Γ
(n,
)
Φ1...ΦN

(p1, . . . , pN ),

carry a bidegree (n, �) where n is the number of factors
of θ and � the number of loops. For our purpose the most
important Slavnov–Taylor identities derived from (3.16)
are the following:

0 =

∑


′=0

n∑
n′=0

(
Γ (n′,
′)
µ;σc (q+r, p)Γ (n−n′,
−
′)µ

Aψ̄ψ
(p, q, r)

+ Γ
(n′,
′)
ψ̄cρ

(q, p, r)Γ (n−n′,
−
′)
ψ̄ψ

(p+q, r)

+ Γ
(n−n′,
−
′)
ψ̄ψ

(q, p+r)Γ (n′,
′)
ρ̄cψ (q, p, r)

)
, (3.18)

0 =

∑


′=0

n∑
n′=0

(
Γ (n′,
′)
µ;σc (q+r+s, p)Γ (n−n′,
−
′)µν

AAψ̄ψ
(p, q, r, s)

+ Γ
(n′,
′)ν
µ;Aσc (q, r+s, p)Γ (n−n′,
−
′)µ

Aψ̄ψ
(p+q, r, s)

+ Γ
(n′,
′)ν
Aψ̄cρ

(q, r, p, s)Γ (n−n′,
−
′)
ψ̄ψ

(p+q+r, s)

+ Γ
(n−n′,
−
′)
ψ̄ψ

(r, p+q+s)Γ (n′,
′)ν
Aρ̄cψ (q, r, p, s)

+ Γ
(n′,
′)
ψ̄cρ

(r, p, q+s)Γ (n−n′,
−
′)ν
Aψ̄ψ

(q, p+r, s)

+ Γ
(n−n′,
−
′)ν
Aψ̄ψ

(q, r, p+s)Γ (n′,
′)
ρ̄cψ (q+r, p, s)

)
, (3.19)

0 =

∑


′=0

n∑
n′=0

Γ (n′,
′)
µ;σc (q, p)Γ (n−n′,
−
′)µν

AA (p, q), (3.20)

0 =

∑


′=0

n∑
n′=0

(
Γ

(n′,
′)ν
µ;Aσc (q, r, p)Γ (n−n′,
−
′)µρ

AA (p+q, r)

+ Γ
(n′,
′)ρ
µ;Aσc (r, q, p)Γ (n−n′,
−
′)µν

AA (p+r, q)

+ Γ (n′,
′)
µ;σc (q+r, p)Γ (n−n′,
−
′)µνρ

AAA (p, q, r)

)
, (3.21)

0 =

∑


′=0

n∑
n′=0

(
Γ (n′,
′)
µ;σc (q+r+s, p)Γ (n−n′,
−
′)µ

Aψ̄cρ
(p, r, q, s)

− Γ (n′,
′)
µ;σc (p+r+s, q)Γ (n−n′,
−
′)µ

Aψ̄cρ
(q, r, p, s)

+ Γ
(n′,
′)
ψ̄cρ

(r, p, q+s)Γ (n−n′,
−
′)
ψ̄cρ

(p+r, q, s)

− Γ
(n′,
′)
ψ̄cρ

(r, q, p+s)Γ (n−n′,
−
′)
ψ̄cρ

(q+r, p, s)

+ Γ (n′,
′)
κcc (r+s, p, q)Γ (n−n′,
−
′)

ψ̄cρ
(r, p+q, s)

)
, (3.22)

0 =

∑


′=0

n∑
n′=0

(
Γ (n′,
′)
µ;σc (q+r+s, p)Γ (n−n′,
−
′)µ

Aρ̄cψ (p, r, q, s)
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− Γ (n′,
′)
µ;σc (p+r+s, q)Γ (n−n′,
−
′)µ

Aρ̄cψ (q, r, p, s)

− Γ
(n′,
′)
ρ̄cψ (r, p, q+s)Γ (n−n′,
−
′)

ρ̄cψ (p+r, q, s)

+ Γ
(n′,
′)
ρ̄cψ (r, q, p+s)Γ (n−n′,
−
′)

ρ̄cψ (q+r, p, s)

+ Γ (n′,
′)
κcc (r+s, p, q)Γ (n−n′,
−
′)

ρ̄cψ (r, p+q, s)

)
. (3.23)

For n = 0 we recover ordinary QED, where additionally
�′ = 0 because there are no loops involving external fields.

The above Slavnov–Taylor identities can be verified
on a formal level of divergent integrals and hold for renor-
malised Green’s functions when using an invariant regular-
isation scheme. However, in contrast to the commutative
world, the Slavnov–Taylor identities are in presence of θ
not strong enough to preserve the form of the action at
higher loop order.

3.3 The tree level Green’s functions

To be explicit, the non-vanishing tree level Green’s func-
tions of our model are at order n = 0 in θ given by

Γ
(0,0)
ψ̄ψ

(q, p) = γµpµ −m,

Γ
(0,0)µ
Aψ̄ψ

(p, q, r) = γµ,

Γ
(0,0)µν
AA (p, q) = − 1

g2 (p2gµν − pµpν),

Γ
(0,0)µ
AB (p, q) = −ipµ,

Γ
(0,0)
BB (p, q) = α, Γ

(0,0)
c̄c (q, p) = p2,

Γ
(0,0)
ρ̄cψ (q, p, r) = i, Γ

(0,0)
ψ̄cρ

(q, p, r) = −i,

Γ (0,0)
µ;σc (q, p) = −ipµ. (3.24)

It is straightforward to check the tree level (� = 0)
Slavnov–Taylor identities (3.18)–(3.23) for n = 0. The
propagators are the bilinear parts of the tree level gen-
erating functional of connected Green’s functions:

∆ψ̄ψ(q, p) = − γµpµ +m

p2 −m2 + iε
,

∆AA
µν (p, q) =

g2

p2 + iε

(
gµν −

(
1 − α

g2

)
pµpν
p2 + iε

)
,

∆AB
µ (p, q) = − ipµ

p2 + iε
,

∆c̄c(q, p) = − 1
p2 + iε

. (3.25)

At order n = 1 in θ we have the following tree level 1PI
Green’s functions:

Γ
(1,0)µ
Aψ̄ψ

(p, q, r) = − i
2
θαβpαrβγ

µ, (3.26)

Γ
(1,0)µν
AAψ̄ψ

(p, q, r, s) = iθµβqβγν + iθνβpβγµ

− i
2
θµν(qρ − pρ)γρ, (3.27)

Γ
(1,0)µνρ
AAA (p, q, r) =

1
g2 iθαβ

(
gαµgβν((qr)pρ − (pr)qρ)

+ gανgβρ((rp)qµ − (qp)rµ)

+ gαρgβµ((pq)rν − (rq)pν)

+ gαµ((gνρ(pq) − pνqρ)rβ + (gνρ(rp) − rνpρ)qβ)

+ gαν((gρµ(qr) − qρrµ)pβ + (gρµ(pq) − pρqµ)rβ)

+ gαρ((gµν(rp) − rµpν)qβ + (gµν(qr) − qµrν)pβ)

+ gµν(pρqαrβ + qρpαrβ) + gνρ(qµrαpβ + rµqαpβ)

+ gρµ(rνpαqβ + pνrαqβ) − gαµ(gνρ(rq) − rνqρ)pβ

− gαν(gρµ(pr) − pρrµ)qβ

− gαρ(gµν(qp) − qµpν)rβ
)
, (3.28)

Γ
(1,0)
ρ̄cψ (q, p, r) =

1
2
θαβpαrβ , (3.29)

Γ
(1,0)
ψ̄cρ

(q, p, r) =
1
2
θαβpαqβ , (3.30)

Γ
(1,0)ν
Aρ̄cψ (q, r, p, s) = −1

2
θνβpβ , (3.31)

Γ
(1,0)ν
Aψ̄cρ

(q, r, p, s) =
1
2
θνβpβ . (3.32)

It is straightforward to check the tree level (� = 0)
Slavnov–Taylor identities (3.18)–(3.23) for n = 1.

3.4 One-loop computation

Using analytic regularisation we compute the one-loop di-
vergent Green’s functions up to first order in θ. We choose
the Feynman gauge α = g2. At order n = 0 in θ we find

Γ
(0,1)
ψ̄ψ

(q, p)

=
�g2

(4π)2ε

(
1
2
Nψ + 3m

∂

∂m

)
Γ

(0,0)
ψ̄ψ

(q, p), (3.33)

Γ
(0,1)µ
Aψ̄ψ

(p, q, r)

=
�g2

(4π)2ε

(
1
2
Nψ + 0NA

)
Γ

(0,0)µ
Aψ̄ψ

(p, q, r), (3.34)

Γ
(0,1)µν
AA (p, q)

=
�g2

(4π)2ε

(
−4

3
g2 ∂

∂g2 +0NA

)
Γ

(0,0)µν
AA (p, q), (3.35)

where Nψ and NA are the counting operators of electrons
ψ̄, ψ and photons Aµ, respectively. There are no diver-
gences in graphs involving c, c̄, B, σµ, ρ, ρ̄ at order 0 in θ
so that ρ, ρ̄ must receive a wave function renormalisation
−(1/2)(�g2)/((4π)2ε)Nρ in order to compensate the wave
function renormalisation of ψ, ψ̄. The result (3.33)–(3.35)
means that at order 0 in θ all one-loop divergences can be
removed by a redefinition of the electron wave function,
the electron mass and the coupling constant.

At order n = 1 in θ we find

Γ
(1,1)
ψ̄ψ

(q, p) = 0, (3.36)

Γ
(1,1)µ
Aψ̄ψ

(p, q, r)
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=
�g2

(4π)2ε

((
1
2
Nψ + 0NA

)
Γ

(1,0)µ
Aψ̄ψ

(p, q, r) (3.37)

+ iθαβ
(

1
2
(pνrβ − rνpβ)δµαγ

ν − 1
4
mδµα(2rν + pν)γβν

− 3
4
(p2δµν − pµpν)γναβ − 3

2
pνpβγ

µν
α +

15
4
mδµαpβ

))
,

Γ
(1,1)µν
AAψ̄ψ

(p, q, r, s) = . . . , (3.38)

Γ
(1,1)µνρ
AAAψ̄ψ

(p, q, r, s, t) = . . . , (3.39)

Γ
(1,1)
ψ̄ψψ̄ψ

(p, q; r, s) =
�g2

(4π)2ε
iθαβ

(
3
4
g2γµ ⊗ γµαβ

)
, (3.40)

Γ
(1,1)µν
AA (p, q) = 0, (3.41)

Γ
(1,1)µνρ
AAA (p, q, r)

=
�g2

(4π)2ε

(
−4

3
g2 ∂

∂g2

)
Γ

(1,0)µνρ
AAA (p, q, r), (3.42)

Γ
(1,1)µ1...µN

A...A (p1, . . . pN ) = . . . , N ∈ {4, 5, 6}. (3.43)

We did not compute the divergent Green’s functions
Γ

(1,1)µν
AAψ̄ψ

(p, q, r, s), Γ
(1,1)µνρ
AAAψ̄ψ

(p, q, r, s, t) and Γ
(1,1)µ1...µN

A...A

(p1, . . . pN ) for N ∈ {4, 5, 6}, because they do not give
new information for the discussion (see footnote 3 below).
The γ-matrices with several indices are antisymmetrised
products of γµ, such as γνβ = (1/2)(γβγν − γνγβ). The
graphs to compute for the Green’s functions (3.36), (3.37)
and (3.40)–(3.42) are exactly the same as those given in
[22], only the Feynman rules are different. There is no
need to print these graphs again. However, there are now
divergent graphs involving external fields, which have no
analogue in [22]. These graphs are computed to be

Γ
(1,1)
ρ̄cψ (q, p, r) =

=
�g2

(4π)2ε
θαβpα

×
(

−1
4
rβ +

1
4
γβνr

ν − 1
2
mγβ

)
, (3.44)

Γ
(1,1)
ψ̄cρ

(q, p, r) =

=
�g2

(4π)2ε
θαβpα

×
(

−1
4
qβ − 1

4
γβνq

ν +
1
2
mγβ

)
, (3.45)

Γ
(1,1)ν
Aρ̄cψ (q, r, p, s) =

=
�g2

(4π)2ε
θαβpα

(
−1

4
δνβ +

1
4
γνβ

)
, (3.46)

Γ
(1,1)ν
Aψ̄cρ

(q, r, p, s) =

=
�g2

(4π)2ε
θαβpα

(
1
4
δνβ +

1
4
γνβ

)
. (3.47)

The external fields ρ̄, ρ are symbolised by dotted lines and
the ghost c by dashed lines, everything else is as in [22].
A vertex with a dot is of first order in θ.

First, the (n = 1, � = 1) Slavnov–Taylor identities
(3.18) and (3.20)–(3.23) are fulfilled, as already expected
from general considerations. For us the importance of
these identities consists in testing the graph computations
performed by a MathematicaTM program [28]. Next, the
one-loop divergent Green’s functions at first order in θ
are considerably different from their tree level form. The
question is then how many of these divergences can be
removed by a field redefinition.

3.5 Field redefinitions

A field redefinition F must preserve the Slavnov–Taylor
identity, hence we have to require

F =


exp

(∑
i

∫
Ψi

δ

δΦi

)∣∣∣∣∣
Φj=0,δΨj/δΦi=0



Ψi=Ψi[Φj ]

,

S(FΓ ) = 0, (3.48)

where the functional Ψi[Φj ] of the fields Φj must be of
the same power-counting dimension, ghost charge and her-
miticity as the field Φi. We make the ansatz

Fψ = ψ − 1
2
τθαβAα∂βψ +

i
4
τθαβmAαγβψ

+
3
8
τ ′θαβFµνγµναβψ, (3.49)

F ψ̄ = ψ̄ − 1
2
τθαβ∂βψ̄Aα − i

4
τθαβψ̄γβmAα

+
3
8
τ ′θαβψ̄Fµνγµναβ , (3.50)

Fρ = ρ− 1
2
τθαβ∂β(Aαρ) +

i
4
τθαβmAαγβρ

− 3
8
τ ′θαβFµνγµναβρ, (3.51)

F ρ̄ = ρ̄− 1
2
τθαβ∂β(ρ̄Aα) − i

4
τθαβ ρ̄γβmAα

− 3
8
τ ′θαβ ρ̄Fµνγµναβ , (3.52)

Fσµ = σµ + θµβ ρ̄

(
1
4
τ(δνβ − γνβ)(∂νψ − iAνψ)

+
i
2
τAβψ − i

2
τγβmψ

)
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− θµβ
(

1
4
τ(∂νψ̄ + iψ̄Aν)(δνβ + γνβ)

− i
2
τψ̄Aβ +

i
2
τψ̄γβm

)
ρ, (3.53)

FAµ = Aµ, Fc = c, Fκ = κ,

F c̄ = c̄, FB = B, (3.54)

which leads to

F(Γ (0,0)) = Γ (0,0)

+ τθαβ
(

−1
2
ψ̄iγµ∂µAα∂βψ +

1
2
ψ̄γµAα∂βAµψ

− 1
4
ψ̄iγµFαβDµψ +

3
8
ψ̄mFαβψ

+
1
4
ψ̄mγµβ (2AαDµψ + ∂µAαψ)

)

+
3
4
τ ′θαβ(−iψ̄γµνα∂βFµνψ + iψ̄γµαβ∂νF νµψ

− ψ̄mγµναβF
µνψ)

+ τθαβ ρ̄∂αc

(
1
4
(δνβ − γνβ)(∂νψ − iAνψ) − i

2
γβmψ

)

+ τθαβ
(

1
4
(∂νψ̄ + iψ̄Aν)(δνβ + γνβ) +

i
2
ψ̄γβm

)
∂αcρ

+ O(θ2). (3.55)

The corresponding Green’s functions are

(FΓ )(1,0)µ
Aψ̄ψ

(p, q, r)

= iτθµβ
(

−1
2
(rνpβ − pνrβ)γν +

3
4
mpβ

− 1
4
m(2rν+pν)γβν

)

+
3
4
iτ ′θαβ

(
− 2pβpνγµνα − γναβ(p2gµν − pµpν)

− 2mpνγ
µν
αβ

)
, (3.56)

(FΓ )(1,0)µν
AAψ̄ψ

(p, q, r, s)

= iτθαβ
(

−1
2
(pβ+qβ)(δµαγ

ν+δναγ
µ)

− 1
2
m(δµαγ

ν
β+δµαγ

µ
β )
)
, (3.57)

(FΓ )(1,0)ρ̄cψ (q, p, r)

= τθαβpα

(
−1

4
(rβ − γνβrν) − 1

2
mγβ

)
, (3.58)

(FΓ )(1,0)
ψ̄cρ

(q, p, r)

= τθαβpα

(
−1

4
(qβ + γνβqν) +

1
2
mγβ

)
, (3.59)

(FΓ )(1,0)νAρ̄cψ (q, r, p, s) = τθαβpα

(
−1

4
(δνβ − γνβ)

)
, (3.60)

(FΓ )(1,0)ν
Aψ̄cρ

(q, r, p, s) = τθαβpα

(
1
4
(δνβ + γνβ)

)
. (3.61)

The Slavnov–Taylor identities (3.18)–(3.23) are verified.
Now (3.37) and (3.44)–(3.47) can be rewritten as

Γ
(1,1)µ
Aψ̄ψ

(p, q, r) =
�g2

(4π)2ε

×
((

1
2
Nψ + 0NA

)
Γ

(1,0)µ
Aψ̄ψ

(p, q, r)

+
(
∂

∂τ
+

∂

∂τ ′

)
(FΓ )(1,0)µ

Aψ̄ψ
(p, q, r)

+ iθαβ
(

3mδµαpβ +
3
2
mpνγ

µν
αβ

))
, (3.62)

Γ
(1,1)
ext.field =

�g2

(4π)2ε
∂

∂τ
(FΓ )(1,0)ext.field, (3.63)

where ext.field stands for ρ̄cψ(q, p, r), ψ̄cρ(q, p, r), νAρ̄cψ(q, r,
p, s) and ν

Aψ̄cρ
(q, r, p, s). In other words, the one-loop di-

vergences in the Green’s functions involving external fields
and, for m = 0, in Γ (1,1)µ

Aψ̄ψ
(p, q, r) can be removed by field

redefinitions. Due to the Slavnov–Taylor identity these
field redefinitions remove all one-loop divergences in
Γ

(1,1)µν
AAψ̄ψ

(p, q, r, s) and Γ
(1,1)µνρ
AAAψ̄ψ

(p, q, r, s, t) as well, and

Γ
(1,1)µ1...µN

A...A (p1, . . . pN ) is convergent for N ∈ {4, 5, 6}3.
There remain only the divergence in the electron four-
point function (3.40) and the two mass terms in (3.62).
It is remarkable that these remaining divergences coincide
exactly (with the same numerical coefficients!) with the
result obtained in [22] where the electrons are Seiberg–
Witten expanded! Moreover, there are no divergences in
the photon N -point functions Γ (1,1)µ1,...µN

A...A (p1, . . . , pN ) af-
ter the same renormalisation of the coupling constant as
in QED, see (3.35). Again, this coincides with the results
found in [22] where the fermions are Seiberg–Witten ex-
panded as well. This is a remarkable result: The physical
(i.e. modulo field redefinitions) one-loop divergences are
insensitive for the choice of non-commutative or Seiberg–
Witten expanded electrons in θ-expanded non-commuta-
tive QED.

3 Since all divergences in Green’s functions involving exter-
nal fields are removed by a field redefinition, see (3.63), the
(n = 1, � = 1) Slavnov–Taylor identity (3.19) implies that the
divergent part of Γ

(1,1)µν
AAψ̄ψ

(p, q, r, s) is transversal (contraction
with pµ yields zero) after the field redefinitions (3.49)–(3.54),
because the remaining divergences in Γ

(1,1)µ
Aψ̄ψ

(p, q, r) are inde-

pendent of r. Since Γ
(1,1)µν
AAψ̄ψ

(p, q, r, s) is linear in momentum
variables and symmetric under (p, µ) ↔ (q, ν), it must be
zero. In the same way one proves Γ

(1,1)µνρ
AAAψ̄ψ

(p, q, r, s, t) = 0
after the field redefinitions (3.49)–(3.54). Similarly, the pho-
ton N -point functions Γ

(1,1)µ1...µN
A...A (p1, . . . pN ) for N ∈ {4, 5, 6}

are transversal in all momenta, but because they are at most
quadratic (for N = 4) in the momentum variables, they must
vanish. This short proof shows that the computation of (3.38),
(3.39) and (3.43) was not necessary
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4 Expanding the action (Case II)

In this section we complete the first order analysis of the
Seiberg–Witten map on quantum level by leaving it out
completely: We repeat the analysis of the previous section
without applying the Seiberg–Witten map to the bosonic
sector. The result is a “tilted” BRST symmetry in both
bosonic and fermionic sectors leading to a tower of sym-
metries involving both bosonic and fermionic actions.

4.1 Classical analysis

The expansion of the action (2.9), including the ghost sec-
tor, is now performed according to

(f � g)(x) = f(x)g(x) +
i
2
θαβ∂αf(x)∂βg(x) + O(θ2),

Φ̂ = Φ, ∀Φ̂ ∈ {Âµ, ψ̂, ψ̂, ĉ, ˆ̄c, B̂, ρ̂, ρ̂, σ̂µ, κ̂}. (4.1)

This leads to the expanded action

Σ
{n}
θ−exp =

n∑
i=0

Σ(i), (4.2)

which up to first order in θ (in which we are only interested
for now) reads

Σ
(0)
cl =

∫
d4x

(
− 1

4g2FµνF
µν + ψ̄ (iγµDµ −m)ψ

)
,

(4.3)

Σ
(1)
cl =

∫
d4x

(
− 1

2g2 θ
αβFµν∂αA

µ∂βA
ν

+
i
2
θαβψ̄γµ∂αAµ∂βψ

)
, (4.4)

Σ
(0)
gf =

∫
d4x

(
B∂µAµ − c̄∂µ∂µc+

α

2
BB

)
, (4.5)

Σ
(1)
gf =

∫
d4x(θαβ∂µc̄ ∂αAµ ∂βc). (4.6)

We expand (2.4) using (4.1) to first order in θ:

s(0)Aµ = ∂µc, s(0)c = 0,

s(0)ψ = icψ, s(0)ψ̄ = −iψ̄c,

s(1)Aµ = θαβ∂αAµ∂βc,

s(1)c = −1
2
θαβ(∂αc)(∂βc),

s(1)ψ = −1
2
θαβ∂αc∂βψ,

s(1)ψ̄ = −1
2
θαβ∂βψ̄∂αc. (4.7)

The above transformations are θ-graded in both bosonic
and fermionic sectors. The θ-expanded BRST transforma-
tions (4.7) fulfil (3.10) and (3.11). Again we also expand
the term with external fields leading to (3.13) with the
BRST transformations defined in (4.7). The full tree level

generating functional is defined by (3.14), now with the
classical and gauge-fixing actions given by (4.6).

Again the full set of BRST symmetries must be ex-
pressed by Slavnov–Taylor identities (3.16) and (3.18)–
(3.23).

4.2 The tree level Green’s functions

At order n = 0 in θ the tree level Green’s functions of Case
II are clearly the same as before (3.24). At order n = 1
in θ we now have the following non-vanishing tree level
Green’s functions:

Γ
(1,0)µ
Aψ̄ψ

(p, q, r, s) = − i
2
θαβpαrβγ

µ, (4.8)

Γ
(1,0)µ
c̄Ac (p, q, r) = iθαβpµqαrβ , (4.9)

Γ
(1,0)µνρ
AAA (p, q, r) =

i
g2 θ

αβ
(
(gµνpρ − gρµpν)qαrβ

+ (gνρqµ − gµνqρ)rαpβ

+ (gρµrν − gνρrµ)pαqβ
)
, (4.10)

Γ
(1,0)ν
µ;Aσc (q, r, p) = δνµθ

αβpαqβ , (4.11)

Γ
(1,0)
ρ̄cψ (q, p, r) =

1
2
θαβpαrβ , (4.12)

Γ
(1,0)
ψ̄cρ

(q, p, r) =
1
2
θαβpαqβ , (4.13)

Γ (1,0)
κcc (p, q, r) = θαβqαrβ . (4.14)

It is straightforward to check the (n = 1, � = 0) Slavnov–
Taylor identities (3.18)–(3.23).

4.3 One-loop computation

The one-loop results for order n = 0 in θ are the same
as before (3.33)–(3.35). At order n = 1 in θ we find the
following divergent Green’s functions in analytic regular-
isation (using again the Feynman gauge α = g2):

Γ
(1,1)
ψ̄ψ

(q, p) = 0, (4.15)

Γ
(1,1)µ
Aψ̄ψ

(p, q, r)

=
�g2

(4π)2ε

((
1
2
Nψ + 0NA

)
Γ

(1,0)µ
Aψ̄ψ

(p, q, r)

+ iθαβ
(

−1
2
pαrβγ

µ − 1
4
(2rµ + pµ)pβγα (4.16)

− 1
4
δµα(2rν + pν)pβγν − 5

4
pνpβγ

µν
α +

7
2
mδµαpβ

))
,

Γ
(1,1)µν
AAψ̄ψ

(p, q, r, s) = . . . , (4.17)

Γ
(1,1)µνρ
AAAψ̄ψ

(p, q, r, s, t) = . . . , (4.18)

Γ
(1,1)
ψ̄ψ;ψ̄ψ(p, q, r, s) = 0, (4.19)

Γ
(1,1)µν
AA (p, q) = 0, (4.20)
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Γ
(1,1)µνρ
AAA (p, q, r)

=
�g2

(4π)2ε

(
−4

3
g2 ∂

∂g2 + 0NA

)
Γ

(1,0)µνρ
AAA (p, q, r), (4.21)

Γ
(1,1)µ1...µN

A...A (p1, . . . pN ) = . . . , N ∈ {4, 5, 6}, (4.22)

Γ
(1,1)
ρ̄cψ (q, p, r) =

=
�g2

(4π)2ε
θαβpα

(
−1

4
qβ − 1

4
mγβ − 1

4
γβνq

ν

)
, (4.23)

Γ
(1,1)
ψ̄cρ

(q, p, r) =

=
�g2

(4π)2ε
θαβpα

(
−1

4
rβ +

1
4
mγβ +

1
4
γβνr

ν

)
, (4.24)

Γ
(1,1)ν
Aρ̄cψ (q, r, p, s) =

=
�g2

(4π)2ε
θαβpα

(
1
4
δνβ +

1
4
γνβ

)
, (4.25)

Γ
(1,1)ν
Aψ̄cρ

(q, r, p, s) =

=
�g2

(4π)2ε
θαβpα

(
−1

4
δνβ +

1
4
γνβ

)
. (4.26)

The (n = 1, � = 1) Slavnov–Taylor identities (3.18) and
(3.20)–(3.23) are verified.

4.4 Field redefinitions

We try again to absorb the divergences in (4.23)–(4.26)
and most of (4.16) by field redefinitions. We make the
ansatz

Fψ = ψ (4.27)

+ θαβ
(

−1
4
τγνα∂βAνψ +

3
8
τ ′γµναβFµνψ − 1

8
τ ′′Fαβψ

)
,

F ψ̄ = ψ̄ (4.28)

+ θαβ
(

1
4
τψ̄γνα∂βAν +

3
8
τ ′ψ̄γµναβFµν − 1

8
τ ′′ψ̄Fαβ

)
,

F ρ̄ = ρ̄ (4.29)

+ θαβ
(

1
4
τ ρ̄γνα∂βAν − 3

8
ρ̄τ ′γµναβFµν +

1
8
τ ′′ρ̄Fαβ

)
,

Fρ = ρ (4.30)

+ θαβ
(

−1
4
τγνα∂βAνρ− 3

8
τ ′γµναβFµνρ+

1
8
τ ′′Fαβρ

)
,

FAµ = Aµ − 3
4
ig2τ ′′′θαβψ̄γµαβψ, (4.31)

Fσµ = σµ

+
1
4
τθµβ((∂ν ρ̄+ iρ̄Aν)(δνβ + γνβ)ψ − iρ̄mγβψ

− ψ̄(δνβ − γνβ)(∂νρ− iAνρ) − iψ̄mγβρ), (4.32)

Fc = c, Fκ = κ, F c̄ = c̄, FB = B, (4.33)

which gives

F(Γ (0,0)) = Γ (0,0)

+ τθαβ
(

−1
2
ψ̄iγν∂βAν∂αψ +

1
4
ψ̄iγα∂ν∂βAνψ

+
1
2
ψ̄iγα∂βAν∂νψ +

1
4
ψ̄iγµνα ∂µ∂βAνψ

− 1
2
ψ̄γνAα∂βAνψ +

1
2
ψ̄γαA

ν∂βAνψ

)

+
3
4
τ ′θαβ

(
− iψ̄γµνα∂βFµνψ + iψ̄γµαβ∂νF νµψ

− ψ̄mγµναβF
µνψ

)

+ τ ′′θαβ
(

−1
8
ψ̄iγµ(∂µFαβψ + 2FαβDµψ)

+
1
4
ψ̄mFαβψ

)

− 3
4
τ ′′′θαβ

(
ψ̄iγµαβ(∂νF νµ − g2∂µB)ψ

+ g2(ψ̄γµψ)(ψ̄iγµαβψ)
)

+
1
4
τθαβ

(
(∂ν ρ̄+ iρ̄Aν)(δνβ + γνβ)∂αcψ − iρ̄mγβ∂αcψ

+ ψ̄∂αc(δνβ − γνβ)(∂νρ− iAνρ) + iψ̄m∂αcγβρ
)

+ O(θ2). (4.34)

The corresponding Green’s functions are

(FΓ )(1,0)µ
Aψ̄ψ

(p, q, r)

= iθαβ
(

−1
2
τpαrβγ

µ − 1
4
τ(pµ+2rµ)pβγα

− 1
4
τ ′′(pν+2rν)pβδµαγ

ν +
(

1
4
τ−3

2
τ ′
)
pνpβγ

µν
α

+
3
4
(τ ′′′ − τ ′)(p2gµν−pµpν)γναβ

+
1
2
τ ′′mpβδµα − 3

2
τ ′mpνγµναβ

)
, (4.35)

(FΓ )(1,0)µν
AAψ̄ψ

(p, q, r, s)
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= iθαβ
(

1
2
(τqβ − τ ′′pβ)δµαγ

ν +
1
2
(τpβ − τ ′′qβ)δναγ

µ

− 1
2
τ(pβ+qβ)gµνγα

)
, (4.36)

(FΓ )(1,0)
ψ̄ψ;ψ̄ψ(p, q, r, s) = −3

4
τ ′′′iθαβg2γµ ⊗ γµαβ , (4.37)

(FΓ )(1,0)
Bψ̄ψ

(p, q, r) = −3
4
τ ′′′iθαβg2pµγµαβ , (4.38)

(FΓ )(1,0)ρ̄cψ (q, p, r)

=
1
4
τθαβpα(qν(−δνβ − γνβ) −mγβ), (4.39)

(FΓ )(1,0)
ψ̄cρ

(q, p, r)

=
1
4
τθαβpα(rν(−δνβ + γνβ) +mγβ), (4.40)

(FΓ )(1,0)νAρ̄cψ (q, r, p, s) =
1
4
τθαβpαqν(δνβ + γνβ), (4.41)

(FΓ )(1,0)
Aψ̄cρ

(q, r, p, s) =
1
4
τθαβpαqν(−δνβ + γνβ). (4.42)

The (n = 1, � = 0) Slavnov–Taylor identities (3.18)–(3.23)
are verified. Now (4.16), (4.19) and (4.23)–(4.26) can be
rewritten as

Γ
(1,1)µ
Aψ̄ψ

(p, q, r)

=
�g2

(4π)2ε

((
1
2
Nψ + 0NA

)
Γ

(1,0)µ
Aψ̄ψ

(p, q, r)

+
(
∂

∂τ
+

∂

∂τ ′ +
∂

∂τ ′′ +
∂

∂τ ′′′

)
(FΓ )(1,0)µ

Aψ̄ψ
(p, q, r)

+ iθαβ
(

3mδµαpβ +
3
2
mpνγ

µν
αβ

))
, (4.43)

Γ
(1,1)
ψ̄ψ;ψ̄ψ(p, q, r, s) =

�g2

(4π)2ε
(4.44)

×
(

∂

∂τ ′′′ (FΓ )(1,0)
ψ̄ψ;ψ̄ψ(p, q, r, s) +

3
4
iθαβg2γµ ⊗ γµαβ

)
,

Γ
(1,1)
Bψ̄ψ

(p, q, r) =
�g2

(4π)2ε

×
(

∂

∂τ ′′′ (FΓ )(1,0)
Bψ̄ψ

(p, q, r) +
3
4
iθαβg2pµγµαβ

)
, (4.45)

Γ
(1,1)
ext.field =

�g2

(4π)2ε
∂

∂τ
(FΓ )(1,0)ext.field, (4.46)

where ext.field stands for ρ̄cψ(q, p, r), ψ̄cρ(q, p, r), νAρ̄cψ(q, r,
p, s) and ν

Aψ̄cρ
(q, r, p, s). Thus, the result after field redefi-

nitions is the same as in Case I and [22], provided that a �

renormalisation of the tree level gauge-fixing action Σ
(0)
gf

from (4.5) to

Σ
′(0)
gf =

∫
d4x

(
B∂µ

(
Aµ − 3

4
g2 �g2

(4π)2ε
θαβψ̄γµαβψ

)

−c̄∂µ∂µc+
α

2
BB

)
(4.47)

is performed. In summary, up to field redefinitions the one-
loop computations of Green’s functions up to first order

in θ are completely independent of the application of the
Seiberg–Witten map
(1) to both electrons and photons [22],
(2) to photons only, Case I, or
(3) to neither photons nor electrons, Case II.
In the next section we shall explain why this has to be the
case.

First let us point out a possibility which we have over-
looked in [22] and which becomes apparent from the loop
calculation of Case II. Putting τ ′ = τ ′′′ = 0 in (4.34) we
have instead of (4.43) and (4.44)

Γ
(1,1)µ
Aψ̄ψ

(p, q, r)

=
�g2

(4π)2ε

((
1
2
Nψ + 0NA

)
Γ

(1,0)µ
Aψ̄ψ

(p, q, r)

+
(
∂

∂τ
+

∂

∂τ ′′

)
(FΓ )(1,0)µ

Aψ̄ψ
(p, q, r)

+ iθαβ
(

3mδµαpβ − 3
2
pνpβγ

µν
α

))
, (4.48)

Γ
(1,1)
ψ̄ψ;ψ̄ψ(p, q, r, s) = 0. (4.49)

The same result can obviously be achieved for the treat-
ments of [22] and Case I as well. This is the minimal field
redefinition in the sense that only two non-absorbable one-
loop divergences remain. It is tempting to try an extended
non-commutative initial action

Σ̂e
cl = Σ̂cl + ge

∫
d4xiθαβ ˆ̄ψ � γµνα D̂

adj
β F̂µν � ψ̂,

D̂adj
β F̂µν = ∂βF̂µν − i[Âβ , F̂µν ]�, (4.50)

where Σ̂cl was given in (2.3) and ge is a new coupling
constant. It turns out that all divergences generated by
this extension term are – apart from the trivial one due to
the wave function renormalisation of ψ̄, ψ – proportional
to the electron mass m. In other words, in massless non-
commutative QED the θ-expansion of (4.50) is one-loop
renormalisable up to first order in θ by the standard QED
wave function and electron charge renormalisations, the
renormalisation

ge(ε) = ge +
3
4

�g2

(4π)2ε
(4.51)

of the additional coupling constant ge and field redefini-
tions.

5 General considerations: Change of variables

In this section we further analyse NCYM theory expanded
in θ. In the following we shall leave the option open as to
whether fermions are included or not. Our starting point
is a trivial expansion of (2.3) according to

(f � g)(x) = f(x)g(x)
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+
∞∑
n=1

1
n!

(
i
2

)n
θα1β1 · · · θαnβn(∂α1 . . . ∂αn

f(x))

×(∂β1 . . . ∂βng(x)),

Φ̂i = Φ′
i, ∀Φ̂i, (5.1)

where Φ̂i denotes all fields of the theory, with the in-
dex i labelling spin and particle type. We reconsider the
Seiberg–Witten map

Φ′
i = Φi +Ωi[Φ], (5.2)

where the field polynomial Ωi[Φ] is at least linear in θ, as
a change of integration variables in the path-integral

Z[J ] = N
∫

[DΦ′]exp
(

i
�
Γcl[Φ′] +

i
�
J iΦ′

i

)
. (5.3)

Here, N is an (ill-defined) normalisation factor and Γcl[Φ′]
is the gauge-fixed NCYM action – possibly including
fermions – expanded according to (5.1) in θ. To improve
the readability we omit space-time integrals in J iΦ′

i ≡∫
d4xJ i(x)Φ′

i(x) as well as in the sequel. We apply (5.2)
to (5.3) and find

Z[J ] = N
∫

[DΦ] det
[
δΦ′

j

δΦk

]

× exp
(

i
�
Γcl[Φ′[Φ]] +

i
�
J iΦ′

i[Φ]
)

= N
∫

[DΦ][DC][DC̄]

× exp

(
i
�
Γcl[Φ′[Φ]] + C̄i δΦ

′
i

δΦj
Cj +

i
�
(J iΦi

+ J iΩi[Φ] + C̄iJi + J̄ iCi)
)∣∣∣∣∣

J =J̄ =0

≡ N
∫

[DΦ][DC][DC̄] exp

(
i
�
Γ̃cl[Φ, C, C̄] +

i
�
(J iΦi

+ J iΩi[Φ] + C̄iJi + J̄ iCi)
)∣∣∣∣∣

J =J̄ =0

. (5.4)

The ghosts and anti-ghosts Ci and C̄i are to be understood
as “towers” of fields of mixed Grassmann grading accord-
ing to the actual field they couple to. The effect of the new
ghost sector and of the additional JΩ vertex introduced
in (5.4) is of course to compensate for the performed field
redefinition in agreement with the equivalence theorem
[29–31].

As usual we split Γ̃cl[Φ, C, C̄] = Γ̃bil[Φ, C, C̄]+Γ̃int[Φ, C, C̄]
into the bilinear part

Γ̃bil[Φ, C, C̄] = −1
2
Φi(∆−1)ijΦj +

�

i
C̄iCi (5.5)

and an interaction part Γ̃int[Φ, C, C̄], in which the fields
are replaced by functional derivatives with respect to the

sources. Then the functional integration can (formally) be
performed and yields

Z[J ] = N ′ exp
(

i
�
J iΩi

[
�

i
∂

∂J

])

× exp
(

i
�
Γ̃int

[
�

i
∂

∂J
,
�

i
∂

∂J̄ ,±�

i
∂

∂J
])

× exp

(
i

2�
J i∆ijJ

j −
(

i
�

)2

J̄ iJi
)∣∣∣∣

J =J̄ =0
. (5.6)

The source J i in front of Ωi is external and therefore
must not be differentiated. We can write J i however as
(∆−1)ijΦj with Φj = (�/i)(δ/δJj) and correct the error
due to contractions of Jj with other sources. One type of
these contractions is given by a loop of these J iΩi vertices
in the form

δΩi1
δΦi2

δΩi2
δΦi3

. . .
δΩin−1

δΦin

δΩin
δΦi1

. (5.7)

These loops cancel exactly the ghost loops, because the
ghost vertices are given by C̄i(δΩi/δΦj)Cj and the ghost
propagator equals 1. Next a single J iΩi vertex can be
contracted with Γ̃int to give −Ωi(Γ̃int/δΦi). This new ver-
tex can further be contracted, as well as the Ωi(∆−1)ijΦj
vertex, and we finally get

Z[J ] = N ′ exp
i
�
(Γbil[Φ−Ω[Φ−Ω[Φ− . . . ]]] − Γbil[Φ]

+ Γ̃int[Φ−Ω[Φ−Ω[Φ− . . . ]]])
∣∣∣
Φ�→(�/i)δ/δJ

× exp
(

i
2�
J i∆ijJ

j

)
. (5.8)

Recalling Φ′ = Φ + Ω[Φ] and Γ [Φ + Ω[Φ]] = Γ̃ [Φ], (5.8)
simplifies to the formula obtained by a direct computation
of (5.3), i.e. without the change of variables (5.2),

Z[J ] = N ′ exp
(

i
�
Γint

[
�

i
∂

∂J

])
exp

(
i

2�
J i∆ijJ

j

)
. (5.9)

The equivalence of (5.6) and (5.9) was of course expected.
We are, however, interested in a different question. It is
clear that (5.9) yields the (general) Green’s functions of
Case II, but how can we relate it to the Green’s functions
of [22] and Case I?

To answer this question we pass to the generating func-
tional

Zc[J ] =
�

i
lnZ[J ] (5.10)

of connected Green’s functions and by Legendre transfor-
mation to the generating functional

Γ [Φcl] = Zc[J ] − J iΦi,cl (5.11)

of 1PI Green’s functions, where J i has to be replaced by
the inverse solution of

Φi,cl =
δZc[J ]
δJ i

. (5.12)
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In this way Γ [Φcl] is obtained as a formal sum over �-loop
Feynman graphs. The model studied in [22] is given by
the subset of Feynman graphs corresponding to (5.6) but
without closed (C, C̄)-ghost loops and without the vertices
involving Ω. The Case I Feynman graphs are obtained by
leaving out the fermionic part of the Ω vertex and the cor-
responding ghosts. We show now that 1PI Graphs in Z[J ]
involving a single Ω vertex result in a field redefinition,
but this property does not extend to higher order in Ω.

The 1PI-part of Zc[J ] which is at most linear in Ω has
the form

Z1PI,lin(Ω)
c [J ] =

1
2
J i∆ijJ

j + Γ̃int[∆·J ] + Γ̃
(
≥1)
eff [∆·J ]

+ J iΩ
(
≥0)
eff,i [∆·J ], (5.13)

where (∆·J)i = ∆ijJ
j . All (�≥1)-loop 1PI graphs without

the Ω vertex are contained in Γ
(
≥1)
eff and all 1PI graphs

involving the Ω vertex are contained in Ω(
≥0)
eff,i . All graphs

are built with the Γ̃int vertices and (C̄, C)-ghost loops are
omitted, assuming the ghost tadpole δΩi/δΦi in (5.7) to
be zero. Now we obtain

Φi,cl = (∆·J)i +∆ij
δΓ̃int

δΦj
[∆·J ]

+ ∆ij
δΓ̃

(
≥1)
eff

δΦj
[∆·J ] +∆ijJ

k
δΩ

(
≥0)
eff,k

δΦj
[∆·J ]

+ Ω
(
≥0)
eff,i [∆·J ], (5.14)

(∆·J)lin(Ω)
i = Φi,cl −∆ij

δΓ̃int

δΦj
[Φcl] −∆ij

δΓ̃
(
≥1)
eff

δΦj
[Φcl]

+ ∆ij
δ2Γ̃int

δΦjδΦk
[Φcl]Ω

(
≥0)
eff,k [Φcl]

+ ∆ij
δ2Γ̃

(
≥1)
eff

δΦjδΦk
[Φcl]Ω

(
≥0)
eff,k [Φcl] −Ω

(
≥0)
eff,i [Φcl]

− ∆ijJ
k
δΩ

(
≥0)
eff,k

δΦj
[Φcl] + 1PR-terms, (5.15)

Γ lin(Ω)[Φcl] =

(
Γ̃

(
≥0)
eff [∆·J ]

− (∆·J)i
δΓ̃int

δΦi
[∆·J ] − (∆·J)i

δΓ̃
(
≥1)
eff

δΦi
[∆·J ]

− (∆·J)iJk
δΩ

(
≥0)
eff,k

δΦi
[∆·J ]

)1PI,lin(Ω)

= Γ̃
(
≥0)
eff [Φcl]

− δΓ̃
(
≥0)
eff

δΦi
[Φcl]Ω

(
≥0)
eff,i [Φcl]. (5.16)

Terms like (Φi,cl − Ω
(
≥0)
eff,i )(δΓint/δΦi)[Φcl] cancel via the

direct occurrence in the first line of (5.16) and the sub-
stitution of (5.15) in Γbil[∆·J ] = −(1/2)(∆·J)∆−1(∆·J).
The final result (5.16) shows that graphs involving the

Ω vertices in (5.6) linearly are a field redefinition. In our
(n = 1, � = 1)-loop calculation the Ω vertices contribute
already with � = 1, therefore, the effect at total loop order
1 is expected to be

Ω
(
=1)
eff,i

δΓcl

δΦi
, (5.17)

which is exactly the difference of the loop calculations of
[22], Case I and Case II.

Taking graphs with more than one Ω vertex into ac-
count, the difference of the cases under consideration can-
not be a field redefinition any longer. Namely, there is now
a graph J i1 · · ·J inΩ(
≥1)

eff,i1...in [∆·J ] in the generalisation of

(5.13), which gives the term (1−n)J i1 · · ·J inΩ(
≥1)
eff,i1...in

[∆·J ] in Γ . The free sources J ik are now replaced e.g.
by δΓeff/δΦk and thus lead to 1PI graphs where the Ω
vertices become inner. These graphs cannot be reached
by field redefinitions, which are outer. In conclusion, we
expect at order θ2 that the differences between [22], Case
I and Case II are no longer field redefinitions.

In principle there are also the (C, C̄)-ghost loops to take
into account. However, the corresponding ghost propaga-
tor equals 1 and the ghost couplings are polynomial in
momenta and masses. If there are no sub-divergences, all
ghost loops vanish trivially, at least in analytic and di-
mensional regularisation. Accordingly, if the (C, C̄)-ghost
vertices are renormalisable, the (C, C̄)-ghosts give no con-
tribution at all.

6 Discussion

In this paper we have continued the quantum analysis of
the Seiberg–Witten map first carried out in [20–22]. We
have analysed θ-expanded non-commutative QED, which
happens to be the easiest non-commutative model to
study in this context. In contrast to [22], where both
bosonic and fermionic sectors were θ-expanded via the
Seiberg–Witten differential equations, we have analysed
in this paper the two cases where
(I) only the bosonic sector is expanded via the Seiberg–
Witten map, and
(II) neither the bosonic nor the fermionic sectors are ex-
panded via the Seiberg–Witten map.

We have found that up to field redefinitions the out-
come of all three approaches is identical. We can sum-
marise our picture about the Seiberg–Witten map as fol-
lows:
(1) The Seiberg–Witten expansion must be seen as a true
(physical) expansion of the fields in a gauge theory, which
is performed prior to quantisation. Otherwise (expanding
after the quantisation) ghosts and Ω vertices generated
due to the change of integration variables would contribute
to the loop calculation and lead to the same result as
without the Seiberg–Witten map.
(2) At first order in θ no difference between θ-expanded
quantum field theories with and without Seiberg–Witten
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map is expected (apart from problems with the choice
of the gauge group, which we ignore here). Our one-loop
QED calculations confirm this.
(3) θ-expanded gauge theory cannot be expected to be
stable under quantisation because divergences will appear
already at first order in θ, for the reason that no symmetry
is known which rules them out. At first order in θ the
additional terms added to the initial action in order to
have enough freedom to absorb these divergences are the
same when using the Seiberg–Witten map or leaving it
out.
(4) At second order in θ there will be substantial dif-
ferences between θ-expansion with or without Seiberg–
Witten map due to contributions of the Ω vertices (and
possibly non-renormalisable ghost sub-divergences).

The most important result of this paper is perhaps that
if one insists on analysing θ-expanded (Abelian) gauge
theories involving fermions one must add the term

ge

∫
d4xiθαβ ˆ̄ψ � γµνα D̂

adj
β F̂µν � ψ̂

to the non-expanded initial action. Also, the fermion
masses should be introduced via a Higgs mechanism.

Let us finally stress that it is not yet possible to make
definite conclusions towards renormalisability of θ-ex-
panded models. It appears that explicit loop calculations
at second order in θ are needed, these are however not eas-
ily accessible due to the enormous volume of calculations
involved.
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